министерство просвещения российской федерации

Министерство образования Иркутской области

МКУ «Комитет по образованию администрации»

МО Заларинский район

МБОУ Ханжиновская СОШ

PACCMOTPEHO

СОГЛАСОВАНО

УТВЕРЖДЕНО

Руководитель МО

Зам. директора по УВР

Директор школы

Смирнова А.А.

Протокол №1 от «29» августа 2023 г.

Брагина О.Н.

Протокол №1 от «30» августа 2023 г.

обще Ситникова Н.В.

Ириказ №55 от «05» сентября 2023 г.

РАБОЧАЯ ПРОГРАММА
ПО УЧЕБНОМУ ПРЕДМЕТУ
«ФИЗИКА»
ФГОС СОО, базовый уровень
для обучающихся 11 класса

Пояснительная записка.

1. Нормативные правовые документы, на основании которых разработана рабочая программа:

- 1. Федерального закона №273 от 29.12.2012 «Об образовании в Российской Федерации»,
- 2. Приказа Министерства образования и науки РФ от 17 мая 2012 г. №413 «Об утверждении федерального государственного образовательного стандарта среднего образования»;
- 3. Приказа Министерства просвещения Российской Федерации от 20.05.2020 № 254 "Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего образования организациями, осуществляющими образовательную деятельность"
- 4. Физика. Базовый уровень 10 11 классы: рабочей программы к линии УМК Г.Я. Мякишева, М.А. Петровой М.: Дрофа, 2019:
- 5. Методического пособия М.А. Петрова, В. В. Кудрявцев, Физика. 11 класс М.: Просвещение, 2021.
- 6. Приказа №295 Министерства юстиции Российской федерации от 16.12.2016г. «Об утверждении Правил внутреннего распорядка исправительных учреждений».
- 7. Годового календарного учебного графика на 2021-2022 учебный год;
- 8. Учебного плана КГКОУ «Вечерняя школа №1» на 2021-2022 учебный год
- 9. Положения «О рабочей программе учебного предмета/курса Краевого Государственного Казенного Общеобразовательного Учреждения «Вечерняя (Сменная) Общеобразовательная Школа №1»;

2. Общие цели среднего общего образования с учётом специфики учебного предмета:

В соответствии с Федеральным государственным образовательным стандартом среднего общего образования главными целями школьного физического образования являются:

- 1) сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- 2) владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- 3) владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- 4) сформированность умения решать физические задачи;
- 5) сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- 6) сформированность собственной позиции по отношению к физической информации, получаемой из разных источников;

Для достижения этих целей в курсе физики на ступени среднего общего образования обеспечивается решением следующих задач: знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлений, физических величинах, характеризующих эти явления;

формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

3. Общая характеристика учебного предмета:

Школьный курс физики – системообразующий для естественно - научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире. Для решения задач формирования естественно-научной картины мира, умения объяснять явления и процессы окружающего мира, используя для этого физические знания, особое внимание в процессе изучения физики уделено использованию научного метода познания, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению.

4. Определение места и роли учебного предмета в учебном плане школы:

Федеральный государственный образовательный стандарт предусматривает изучение курса физики в средней школе как составной части предметной области «Естественнонаучные предметы».

В соответствии с учебным планом на изучение физики в 11 классе отводится 2 часа в неделю, 34 учебных недель, 68 часов в год соответственно.

Отбор содержания проведён с учётом культуросообразного подхода, в соответствии с которым учащиеся должны освоить содержание, значимое для формирования познавательной, нравственной и эстетической культуры, сохранения окружающей среды и собственного здоровья, для повседневной жизни и практической деятельности.

5. Количество учебных часов, на которое рассчитана рабочая программа (в соответствии с учебным планом, годовым календарным учебным графиком ОУ).

№п/	Тема	Количество	Количество	Количество	Количество
П		часов	часов	лабораторных	контрольных
		по авторской	по рабочей	работ	работ
		программе	программе		
1	Постоянный электрический ток	9	9	1	1
2	Электрический ток в средах	5	4	1	

3	Магнитное поле	6	5		
4	Электромагнитная индукция	4	4		1
5	Механические колебания и волны	7	6	3	
6	Электромагнитные колебания и волны	8	8		1
7	Законы геометрической оптики	5	5		
8	Волновая оптика	4	4	1	1
9	Элементы теории относительности	2	2		
10	Квантовая физика. Строение атома	5	5		
11	Физика атомного ядра. Элементарные частицы	9	9	1	1
12	Элементы астрофизики	4	3		
13	Резерв времени.	-	4		
14	Итого	68	68	7	5

6. Отличие от авторской, с указанием внесённых изменений в авторскую программу и их обоснование.

Руководствуясь Приказом №295 Министерства юстиции Российской федерации от 16.12.2016 года «Об утверждении Правил внутреннего распорядка исправительных учреждений» лабораторные, практические работы, а также демонстрационные опыты с использованием веществ и приборов, запрещенных в пенитенциарной системе, либо заменены на видео демонстрации, либо заменены на теоретический материал соответствующей тематики. Для формирования определенных умений в изучаемом курсе проводятся лабораторные работы. Всего лабораторных работ — 7. Для получения практических навыков при проведении демонстрационного физического эксперимента или фронтальной лабораторной работы используется ресурс виртуальной лаборатории, что позволяет учащимся трансформировать свои теоретические знания в практические навыки экспериментальным путем.

Для создания 4 резервных часов, сокращено количество часов в теме:

- «Электрический ток в средах», (было 5 часов, стало 4 часа) за счет объединения тем на уроке № 12 «Электрический ток в газах.» и «Электрический ток в вакууме.»

- «Магнитное поле», (было 6 часов, стало 5 часов) за счет объединения тем на уроке № 15 «Индукция магнитного поля.» и «Линии магнитной индукции.»
- «Механические колебания и волны», (было 7 часов, стало 6 часов) за счет объединения тем на уроке № 27 «Вынужденные колебания. Резонанс» и «Механические волны.»
- «Элементы астрофизики», (было 4 часа, стало 3 часа) за счет объединения тем на уроке № 62 «Солнечная система.» и «Солнце. Звезды.»

7. Используемые технологии обучения, формы уроков (с учётом уровневой дифференциации и индивидуальных возможностей учащихся класса).

- 1. Рабочая программа разработана для учащихся 11-х классов, в котором обучаются учащиеся с различной мотивацией: мотивированные, но в основном со слабой мотивацией. Исходя из способностей учащихся, учебный процесс строится с учетом индивидуальных особенностей каждого. Технологии обучения: личностно-ориентированные, разноуровневого обучения, социально-коммуникативные, игрового обучения, критического мышления;
- 2. Механизмы формирования ключевых компетенций учащихся: Повторение, обобщение, систематизация, сравнение, анализ, рассказ учителя, пересказ, самостоятельная работа с учебником, раздаточным материалом, индивидуальная работа, работа в парах, работа в группах, исследовательская деятельность, использование ИКТ технологий;
- 3. Формы организации учебного процесса: Урок.

8. Виды и формы контроля

Мониторинг и оценивание результатов деятельности осуществляется с помощью:

- 1. Предварительного контроля (устный опрос);
- 2. Текущего контроля (устный опрос, работа с карточками);
- 3. Тематического контроля (лабораторные и контрольные работы по темам);

9. Содержание учебного предмета.

ЭЛЕКТРОДИНАМИКА (ПРОДОЛЖЕНИЕ)

Постоянный электрический ток.

Действия электрического тока. Условия существования электрического тока. Сторонние силы. Электрический ток в проводниках. Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от температуры. Соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Измерение силы тока, напряжения и сопротивления в электрической цепи. Электродвижущая сила. Источники тока. Закон Ома для полной цепи.

Лабораторная работа 1. Измерение ЭДС и внутреннего сопротивления источника тока. Контрольная работа по теме «Постоянный электрический ток».

Электрический ток в средах.

Экспериментальные обоснования электронной проводимости металлов. Электрический ток в растворах и расплавах электролитов. Электрический ток в газах. Электрический ток в вакууме. Электрический ток в полупроводниках. Полупроводниковые приборы. Лабораторные работы 2. Изготовление гальванического элемента и испытание его в действии.

Магнитное поле.

Магнитные взаимодействия. Магнитное поле токов. Индукция магнитного поля. Линии магнитной индукции. Действие магнитного поля на проводник с током. Закон Ампера. Движение заряженных частиц в магнитном поле. Сила Лоренца. Магнитные свойства вещества.

Электромагнитная индукция.

Опыты Фарадея. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля тока.

Контрольная работа по темам «Магнитное поле», «Электромагнитная индукция».

КОЛЕБАНИЯ И ВОЛНЫ

Механические колебания и волны.

Условия возникновения механических колебаний. Две модели колебательных систем. Кинематика колебательного движения. Гармонические колебания. Динамика колебаниях. Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Волны в среде. Звук.

Лабораторная работа 3. Исследование колебаний пружинного маятника.

Лабораторная работа 4. Исследование колебаний нитяного маятника.

Лабораторная работа 5. Определение скорости звука в воздухе.

Электромагнитные колебания и волны.

Свободные электромагнитные колебания. Колебательный контур. Формула Томсона. Процессы при гармонических колебаниях в колебательном контуре. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы тока и напряжения. Резистор в цепи переменного тока. Трансформатор. Электромагнитные волны. Принципы радиосвязи и телевидения.

Контрольная работа по темам «Механические колебания и волны», «Электромагнитные колебания и волны».

Законы геометрической оптики.

Закон прямолинейного распространения света. Закон отражения света. Закон преломления света. Линзы. Формула тонкой линзы. Построение изображений в тонких линзах. Глаз как оптическая система.

Волновая оптика.

Измерение скорости света. Дисперсия света. Принцип Гюйгенса. Интерференция волн. Интерференция света. Дифракция света. **Лабораторные работы 6. Исследование явлений интерференции и дифракции света.**

Контрольная работа по темам «Законы геометрической оптики», «Волновая оптика».

Элементы теории относительности.

Законы электродинамики и принцип относительности. Опыт Майкельсона. Постулаты специальной теории относительности. Масса, импульс и энергия в специальной теории относительности.

КВАНТОВАЯ ФИЗИКА. АСТРОФИЗИКА.

Квантовая физика. Строение атома.

Равновесное тепловое излучение. Гипотеза Планка. Законы фотоэффекта. Давление света. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Планетарная модель атома. Опыты Резерфорда. Постулаты Бора. Модель атома водорода по Бору.

Физика атомного ядра. Элементарные частицы.

Методы регистрации заряженных частиц. Естественная радиоактивность. Альфа-, бета- и гамма-излучения. Радиоактивные превращения. Закон радиоактивного распада. Изотопы. Искусственное превращение атомных ядер. Протонно-нейтронная модель атомного ядра. Ядерные силы. Энергия связи атомных ядер. Цепные ядерные реакции. Ядерный реактор. Биологическое действие радиоактивных излучений. Применение радиоактивных изотопов. Элементарные частицы. Фундаментальные взаимодействия.

Лабораторные работы 7. Измерение естественного радиационного фона.

Контрольная работа по теме «Квантовая физика».

Элементы астрофизики.

Солнечная система. Солнце. Звезды. Наша Галактика. Другие галактики. Пространственно - временные масштабы наблюдаемой Вселенной. Представления об эволюции Вселенной.

Резервное время

10. Календарно – тематическое планирование (68 ч, 2ч. в неделю)

		Тема урока		
№ п/п	№ в теме	По плану (учебные недели)	Фактически	
		11	11	
1	1	1 неделя		Условия существования электрического тока. Электрический ток в проводниках (§ 1). Инструктаж по ТБ.
2	2	1 неделя		Закон Ома для участка цепи. Зависимость сопротивления от температуры (§ 2).
3	3	2 неделя		Соединение проводников (§ 4).
4	4	2 неделя		Работа и мощность электрического тока. Закон Джоуля—Ленца (§ 5).
5	5	3 неделя		Измерение силы тока, напряжения и сопротивления в электрической цепи (§ 6).

6	6	3 неделя	Электродвижущая сила. Источники тока (§ 7).
7	7	4 неделя	Закон Ома для полной цепи (§ 8).
8	8	4 неделя	Лабораторная работа № 1 «Измерение ЭДС и внутреннего сопротивления источника тока».
9	9	5 неделя	Контрольная работа по теме «Постоянный электрический ток».
10	1	5 неделя	Экспериментальные обоснования электронной проводимости металлов (§ 9).
11	2	6 неделя	Электрический ток в растворах и расплавах электролитов. Закон электролиза (§ 10). Лабораторная работа № 2 «Изготовление гальванического элемента и испытание его в действии».
12	3	6 неделя	Электрический ток в газах (§ 11). Электрический ток в вакууме (§ 13).
13	4	7 неделя	Электрический ток в полупроводниках (§ 14).
14	1	7 неделя	Магнитные взаимодействия. Магнитное поле токов (§ 15).
15	2	8 неделя	Индукция магнитного поля (§ 16). Линии магнитной индукции (§ 17).
16	3	8 неделя	Действие магнитного поля на проводник с током. Закон Ампера (§ 18).
17	4	9 неделя	Движение заряженных частиц в магнитном поле. Сила Лоренца (§ 19).
18	5	9 неделя	Магнитные свойства вещества (§ 20).
19	1	10 неделя	Опыты Фарадея. Магнитный поток (§ 21).
20	2	10 неделя	Закон электромагнитной индукции. Вихревое электрическое поле (§ 22).
21	3	11 неделя	Самоиндукция. Индуктивность. Энергия магнитного поля тока (§ 23).
22	4	11 неделя	Контрольная работа по теме: «Электромагнитная индукция».
23	1	12 неделя	Условия возникновения механических колебаний. Две модели колебательных систем (§ 24).
24	2	12 неделя	Кинематика колебательного движения. Гармонические колебания (§ 25).

25	3	13 неделя	Динамика колебательного движения (§ 26). Лабораторная работа № 3 «Исследование колебаний пружинного маятника».
26	4	13 неделя	Превращение энергии при гармонических колебаниях. Затухающие колебания (§ 27). Лабораторная работа № 4 «Исследование колебаний нитяного маятника».
27	5	14 неделя	Вынужденные колебания. Резонанс (§ 28). Механические волны (§ 29).
28	6	14 неделя	Волны в среде. Звук (§ 30). Лабораторная работа № 5 «Определение скорости звука в воздухе».
29	1	15 неделя	Свободные электромагнитные колебания. Колебательный контур (§ 31).
30	2	15 неделя	Процессы при гармонических колебаниях в колебательном контуре (§ 32).
31	3	16 неделя	Вынужденные электромагнитные колебания. Переменный ток (§ 33).
32	4	16 неделя	Резистор в цепи переменного тока. Действующие значения силы тока и напряжения (§ 34).
33	5	17 неделя	Трансформатор (§ 37). Инструктаж по ТБ.
34	6	17 неделя	Электромагнитные волны (§ 39).
35	7	18 неделя	Принципы радиосвязи и телевидения (§ 40).
36	8	18 неделя	Контрольная работа по темам «Механические колебания и волны», «Электромагнитные колебания и волны».
37	1	19 неделя	Закон прямолинейного распространения света. Закон отражения света (§ 41).
38	2	19 неделя	Закон преломления света (§ 42).
39	3	20 неделя	Линзы. Формула тонкой линзы (§ 44).
40	4	20 неделя	Построение изображений в тонких линзах (§ 45).
41	5	21 неделя	Глаз как оптическая система (§ 46).
42	1	21 неделя	Измерение скорости света. Дисперсия света (§ 48).

43	2	22 неделя	Принцип Гюйгенса (§ 49). Интерференция волн (§ 50).
44	3	22 неделя	Интерференция света (§ 51). Дифракция света (§ 52). Лабораторная работа № 6 «Исследование явлений интерференции и дифракции света».
45	4	23 неделя	Контрольная работа по темам «Законы геометрической оптики», «Волновая оптика».
46	1	23 неделя	Законы электродинамики и принцип относительности (§ 55). Постулаты специальной теории относительности (§ 56).
47	2	24 неделя	Масса, импульс и энергия в специальной теории относительности (§ 57).
48	1	24 неделя	Равновесное тепловое излучение (§ 58).
49	2	25 неделя	Законы фотоэффекта (§ 59).
50	3	25 неделя	Давление света. Корпускулярно-волновой дуализм (§ 60).
51	4	26 неделя	Планетарная модель атома (§ 61).
52	5	26 неделя	Постулаты Бора. Модель атома водорода по Бору (§ 62).
53	1	27 неделя	Методы регистрации заряженных частиц (§ 64).
54	2	27 неделя	Естественная радиоактивность (§ 65).
55	3	28 неделя	Радиоактивные превращения. Закон радиоактивного распада. Изотопы (§ 66).
56	4	28 неделя	Искусственное превращение атомных ядер. Протонно-нейтронная модель атомного ядра (§ 67).
57	5	29 неделя	Ядерные силы. Энергия связи атомных ядер (§ 68).
58	6	29 неделя	Цепные ядерные реакции. Ядерный реактор (§ 69).
59	7	30 неделя	Биологическое действие радиоактивных излучений (§ 70). Лабораторная работа № 7 «Измерение естественного радиационного фона».
60	8	30 неделя	Элементарные частицы. Фундаментальные взаимодействия (§ 72).
61	9	31 неделя	Контрольная работа по теме «Квантовая физика».
62	1	31 неделя	Солнечная система (§ 73). Солнце (§ 74). Звезды (§ 75).

63	2	32 неделя	Наша Галактика (§ 76).
64	1	22	Пространственно-временные масштабы наблюдаемой Вселенной (§ 78).
04		32 неделя	Представления об эволюции Вселенной (§ 79).
65	1	33 неделя	Резервный урок.
66	2	33 неделя	Резервный урок.
67	3	34 неделя	Резервный урок.
68	4	34 неделя	Резервный урок.

11. Планируемые образовательные результаты.

Личностными результатами обучения физике в средней школе являются:

- в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя ориентация на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности, к отстаиванию личного достоинства, собственного мнения, вырабатывать собственную позицию по отношению к общественно политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества; принятие и реализацию ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- в сфере отношений обучающихся к России как к Родине (Отечеству) российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; уважение к своему народу, чувство ответственности перед Родиной, гордость за свой край, свою Родину, за прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн); формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения; воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации;
- в сфере отношений обучающихся к закону, государству и к гражданскому обществу гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни; признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а так-же различных форм общественного сознания, осознание своего места в поликультурном мире; интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации; готовность обучающихся к конструктивному участию в

принятии решений, затрагивающих права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности; приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям; готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии, коррупции, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;

- в сфере отношений обучающихся с окружающими людьми нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношения к другому человеку, его мнению, мировоззрению; способностей к сопереживанию и формирования позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь; формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия); компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; экологическая культура, бережное отношения к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственности за состояние природных ресурсов, умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности; эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта;
- в сфере отношений обучающихся к труду, в сфере социально-экономических отношений уважение всех форм собственности, готовность к защите своей собственности; осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности для подготовки к решению личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности, готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Метапредметные результаты обучения физике в средней школе представлены тремя группами универсальных учебных действий.

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленной цели;

- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной ранее целью;
- оценивать последствия достижения поставленной цели в учебной деятельности, собственной жизни и жизни окружающих людей.

Познавательные универсальные учебные действия

Выпускник научится:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты обучения физике в средней школе

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современных техники и технологий, в практической деятельности людей;
- показывать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая
- различать и уметь использовать в учебно-исследовательской деятельности методы научного исследования (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные измерения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность измерения по формулам;
- выполнять исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера), используя модели, физические величины и законы; выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические и роль физики в решении этих проблем;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.